Mathématiques

Question

quelle est l expressions algebrique de la fonction affine f sachant que f(1)=5et f(3)=11

2 Réponse

  • bjr

    f(1) = 5 et f(3) = 11  

    la droite qui représente cette fonction passe par les points

    A(1 ; 5) et B(3 ; 11)

    elle a pour coefficient directeur

    (yB - yA) / (xB - xA) soit : (11 - 5)/(3 - 1) = 6/2 = 3

    son équation est de la forme

    y = 3x + b

    pour trouver b on écrit qu'elle passe par le point A(1 ; 5)

    5 = 3*1 + b

    b = 2

    y = 3x + 2

    la fonction est f(x) = 3x + 2

  • Bonsoir ! ;)

    Réponse :

    • Si f (1) = 5, cela signifie que la droite représentative de la fonction affine f passe par le point A(1 ; 5).
    • Si f (3) = 11, cela signifie que la droite représentative de la fonction affine f passe par le point B(3 ; 11).

    - Le coefficient directeur de la droite représentative de la fonction affine f passant par les points A et B est défini par : a = [tex]\frac{y(B)-y(A)}{x(B)-x(A)}[/tex]

    ⇒ a = [tex]\frac{11-5}{3-1}[/tex]

    a = 3

    Donc, la fonction affine f a une expression de la forme : y = 3x + b.

    - Pour déterminer l'ordonnée à l'origine " b ", il suffit, par exemple, de résoudre l'équation : 5 = 3 * 1 + b

    ( tu remplaces dans l'expression " y = 3x + b ", le " y " et le " x " par les coordonnées du point A(1 ; 5) ! )

    ⇒ 5 = 3 + b

    ⇒ 5 - 3 = b

    b = 2

    Ainsi, la fonction affine f a pour expression : y = 3x + 2.

Autres questions